甲、乙两射击运动员分别对一目标射击次,甲射中的概率为,乙射中的概率为,求:(1)人都射中目标的概率;(2)人中恰有人射中目标的概率;(3)人至少有人射中目标的概率
已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F分别是 AB、PC的中点. (1) 求证:EF∥平面PAD; (2) 求证:EF⊥CD; (3) 若∠PDA=45°,求EF与平面ABCD所成的角的大小.
在正方体ABCD-A1B1C1D1中,E、F为棱AD、AB的中点. (1)求证:EF∥平面CB1D1; (2)求证:平面CAA1C1⊥平面CB1D1
已知函数 (1)求的定义域;(2)证明函数是奇函数。
如图,在平行四边形中,边所在直线的方程为,点. (1)求直线的方程; (2)求边上的高所在直线的方程.
如图,A、C两岛之间有一片暗礁,一艘小船于某日上午8时从A岛出发,以10海里/小时的速度,沿北偏东75°方向直线航行,下午1时到达B处.然后以同样的速度,沿北偏东15°方向直线航行,下午4时到达C岛. (Ⅰ)求A、C两岛之间的直线距离; (Ⅱ)求∠BAC的正弦值.