(本小题满分13分)如图,已知菱形的边长为,,.将菱形沿对角线折起,使,得到三棱锥.(Ⅰ)若点是棱的中点,求证:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)设点是线段上一个动点,试确定点的位置,使得,并证明你的结论.
(本小题满分14分)如图,斜三棱柱中,侧面底面ABC,底面ABC是边长为2的等边三角形,侧面是菱形,,E、F分别是、AB的中点.求证:(Ⅰ);(Ⅱ)求三棱锥的体积.
(本小题满分12分)为了宣传今年10月在某市举行的“第十届中国艺术节”, “十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样n人,回答问题统计结果如下图表所示:(Ⅰ)分别求出a,x的值;(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
(本小题满分12分)已知函数.(1)求的值;(2)求函数的最小正周期及单调递减区间.
已知,函数,其中.(Ⅰ)当时,求的最小值;(Ⅱ)在函数的图像上取点 ,记线段PnPn+1的斜率为kn ,.对任意正整数n,试证明:(ⅰ);(ⅱ).
如图,实线部分的月牙形公园是由圆上的一段优弧和圆上的一段劣弧围成,圆和圆的半径都是,点在圆上,现要在公园内建一块顶点都在圆上的多边形活动场地.(Ⅰ)如图甲,要建的活动场地为△,求活动场地的最大面积;(Ⅱ)如图乙,要建的活动场地为等腰梯形,求活动场地的最大面积;