(本小题满分12分)为了研究某高校大学新生的视力情况,随机地抽查了该校100名进校学生的视力情况,得到频率分布直方图如下图所示,已知后6组的频数从左到右依次是等差数列的前六项。(1)试确定视力介于4.9至5.0的抽查学生的人数。(2)若规定视力低于5.0的学生属于近视学生,试估计该校新生的近视率的大小。
(本小题满分7分)选修4-2:矩阵与变换 已知矩阵的逆矩阵为. (Ⅰ)求矩阵; (Ⅱ)矩阵A的特征值及对应的特征向量.
(本小题满分14分)已知函数. (Ⅰ)若,且,求的取值范围; (Ⅱ)如果函数在上单调递增,求的取值范围; (Ⅲ)求证:.
(本小题满分13分)如图,圆的方程为,是圆内一个定点,且中点为原点,是圆上任意一点,线段的垂直平分线与半径相交于点. (Ⅰ)当点在圆上运动时,求证:点的轨迹为椭圆,并求轨迹的方程; (Ⅱ)在(Ⅰ)的条件下,过点的直线l交椭圆于A,B两点,交直线于点E,求证:为定值.
(本小题满分13分)某电视台的冲关电视节,要求参赛者从道选题中一次性随机抽取道题,至少独立的正确回答道题,方可进入下一关.已知道备选题中参赛者小福有道题能正确回答,道题不能正确回答;参赛者小州每题正确回答的概率都是,且每题正确回答与否互不影响. (Ⅰ)分别求小福、小州两人正确回答试题数的分布列,并计算其数学期望; (Ⅱ)请分析比较小福、小州两人谁进入下一关的可能性大.
(本小题满分13分)如图,在四棱锥PABCD中,侧面PAD⊥底面ABCD,侧棱,,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,O为AD中点. (Ⅰ)求证:平面; (Ⅱ)求直线与平面所成角的大小;