(本小题满分10分)如图甲,⊙的直径,圆上两点在直径的两侧,使, .沿直径折起,使两个半圆所在的平面互相垂直(如图乙),为的中点.根据图乙解答下列各题:(1)求点到的距离;(2)在弧上是否存在一点,使得∥平面?若存在,试确定点的位置;若不存在,请说明理由.
如图,已知椭圆(a>b>0)的离心率,过点A(0,-b)和B(a,0)的直线与原点的距离为. (1)求椭圆的方程. (2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C、D两点.问:是否存在k的值,使以CD为直径的圆过E点?请说明理由.
在正方体中,如图E、F分别是 ,CD的中点, (1)求证:; (2)求.
已知:等差数列{}中,=14,前10项和. (Ⅰ)求; (Ⅱ)将{}中的第2项,第4项,…,第项按原来的顺序排成一个新数列,求此数列的前项和.
抛物线的顶点在原点,它的准线过双曲线的一个焦点,并与 双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程.
已知关于x的一元二次方程 (m∈Z) ① mx2-4x+4=0, ② x2-4mx+4m2-4m-5=0,求方程①和②都有整数解的充要条件.