(本小题满分12分) 已知a为实数,。(1)若,求在[-2,2] 上的最大值和最小值;;(2)若在(-∞,-2)和(2,+∞)上都是递增的,求a的取值范围。
如图①,在等腰梯形中,已知均为梯形的高,且。现沿将和折起,使点重合为一点,如图②所示。又点为线段的中点,点在线段上,且。(1)求线段的长; (2)求二面角的大小。
(本小题满分14分)已知函数在(0,+)上是增函数,在[–1,0]上是减函数,且方程有三个根,它们分别为α,–1,β. (1)求c的值;(2)求证:;(3)求|α–β|的取值范围.
(本小题满分14分)如图,在直三棱柱ABC—A1B1C1中,,,,,点D在棱上,且∶∶3 w.(1)证明:无论a为任何正数,均有BD⊥A1C; (2)当a为何值时,二面角B—A1D—B1为60°?
(本小题满分13分)已知直线经过点A,求:(1)直线在两坐标轴上的截距相等的直线方程;(2)直线与两坐标轴的正向围成三角形面积最小时的直线方程;(3)求圆关于直线OA对称的圆的方程。
(本小题满分13分)已知函数在时有极值,其图象在点处的切线与直线平行.(1)求的值和函数的单调区间;(2)若当时,恒有,试确定的取值范围.