.已知函数.(1)如果,求的单调区间和极值;(2)如果,函数在处取得极值.(i)求证:;(ii)求证:.
某中学的数学测试中设置了“数学与逻辑”和“阅读与表达”两个内容,成绩分为A、B、C、D、E五个等级。某班考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩等级为B的考生有10人 (1)求该班考生中“阅读与表达”科目中成绩等级为A的人数;(2)若等级A、B、C、D、E分别对应5分、4分、3分、2分、1分,该考场共10人得分大于7分,其中2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和的分布列。
如图菱形ABEF所在平面与直角梯形ABCD所在平面互相垂直,AB=2AD=2CD=4,,点H、G分别是线段EF、BC的中点.(1)求证:平面AHC平面;(2)点M在直线EF上,且平面,求平面ACH与平面ACM所成锐角的余弦值.
在数列中,(1)若数列是等比数列, 求实数;(2)求数列的前项和.
已知函数(1)当时,求函数取得最大值和最小值时的值;(2)设锐角的内角A、B、C的对应边分别是,且,若向量与向量平行,求的值.
如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点.(1)求椭圆的方程;(2)求的最小值,并求此时圆的方程;(3)设点是椭圆上异于、的任意一点,且直线、分别与轴交于点、,为坐标原点,求证:为定值.