.甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数的分布列及数学期望;(2)求甲、乙两人至少有一人入选的概率.
(本小题满分10分)如图,在△中,,平分交于点,点在上,.(Ⅰ)求证:是△的外接圆的切线;(Ⅱ)若,求的长.
(本小题满分10分)设,解关于的不等式:
(本小题满分8分)在直角坐标系中,直线的参数方程为(为参数).在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,圆的方程为.(I)求圆的参数方程;(II)设圆与直线交于点,求弦长
(本小题满分8分)已知函数.(Ⅰ)作出函数的图象; (Ⅱ)解不等式
(本小题满分8分)如图,切⊙O于点为的中点,过点引割线交⊙O于、两点.求证:.