.甲、乙两人同时参加奥运志愿者的选拔赛,已知在备选的10道题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数的分布列及数学期望;(2)求甲、乙两人至少有一人入选的概率.
(满分10分) 如下图,AB、CD是圆的两条平行弦,BE//AC,BE交CD于E、交圆于F,过A点的切线交DC的延长线于P,PC=ED=1,PA=2. (I)求AC的长; (II)求证:BE=EF.
(满分12分)设函数. (Ⅰ)求函数的单调递增区间; (II)若关于的方程在区间内恰有两个相异的实根,求实数的取值范围.
(满分12分)已知椭圆的一个顶点为B,离心率, 直线l交椭圆于M、N两点. (Ⅰ)求椭圆的标准方程; (II)如果ΔBMN的重心恰好为椭圆的右焦点F,求直线的方程.
(满分12分)如右图,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中点。 (Ⅰ)求证:B1C//平面A1BD; (Ⅰ)求二面角A—A1B—D的余弦值。
(满分12分)以下茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示. (Ⅰ)如果X=8,求乙组同学植树棵树的平均数和方差; (II)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.