(已知函数,且。(1)求的值域; (2)解不等式。
某工厂有A、B两种配件生产甲、乙两种产品,每生产一件甲产品使用4个A配件耗时1h,每生产一件乙产品使用4个B配件耗时2h,该厂每天最多可从配件厂获得16个A配件和12个B配件,按每天8h计算,若生产一件甲产品获利2万元,生产一件乙产品获利3万元,采用哪种生产安排利润最大?
在△ABC中,已知B=45°,D是BC边上的一点,AB=5,AC="14," DC=6,求AD的长.
(本小题满分14分)设函数,的两个极值点为,线段的中点为.(1) 如果函数为奇函数,求实数的值;当时,求函数图象的对称中心;(2) 如果点在第四象限,求实数的范围;(3) 证明:点也在函数的图象上,且为函数图象的对称中心.
(本小题满分14分) 如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动.(1)当时,求椭圆的方程,(2)当的边长恰好是三个连续的自然数时,求面积的最大值.
(本小题满分13分)某园林公司计划在一块为圆心,半径为5的半圆形(如图)地上种植花草树木,其中弓形区域用于观赏样板地,区域用于种植花木出售,其余区域用于种植草皮出售.已知观赏样板地的成本是每平方米2元,花木的利润是每平方米8元,草皮的利润是每平方米3元. (1) 设,,分别用,表示弓形的面积;
观赏样板地
(2) 园林公司应该怎样规划这块土地,才能使总利润最大?(参考公式:扇形面积公式)