(本小题满分14分)给定椭圆: ,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 已知椭圆的两个焦点分别是,椭圆上一动点满足.(Ⅰ)求椭圆及其“伴随圆”的方程;(Ⅱ) 过点P作直线,使得直线与椭圆只有一个交点,且截椭圆的“伴随圆”所得的弦长为.求出的值.
为了迎接省运会,为了降低能源损耗,鹰潭市体育馆的外墙需要建造隔热层.体育馆要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度(单位:cm)满足关系:,若不建隔热层,每年能源消耗费用为8万元.设为隔热层建造费用与20年的能源消耗费用之和. (1)求的值及的表达式; (2)隔热层修建多厚时,总费用达到最小,并求最小值
在△ABC中,内角A,B,C所对边长分别为,,,. (1)求的最大值及的取值范围; (2)求函数的最大值和最小值.
已知 (I)a=2时,求和的公共点个数; (II)a为何值时,的公共点个数恰为两个。
已知椭圆的右焦点为F2(1,0),点在椭圆上。 (I)求椭圆方程; (II)点在圆上,M在第一象限,过M作圆的切线交椭圆于P、Q两点,问|F2P|+|F2Q|+|PQ|是否为定值?如果是,求出定值,如不是,说明理由。
已知数列的前n项和为 (I)求的通项公式; (II)数列,求数列的前n项和; (III)若对一切正整数n恒成立,求实数m的取值范围。