.(本小题满分14分) 直棱柱 中,底面 ABCD是直角梯形,∠ BAD=∠ ADC=90°, . (Ⅰ) 求证: AC⊥平面 BB 1 C 1 C; (Ⅱ)若P为 A 1 B 1的中点,求证: DP∥平面 BCB 1,且 DP∥平面 ACB 1.
已知满足不等式,求函数的最小值.
已知集合, (1)若,求实数的值; (2)设全集为R,若,求实数的取值范围。
若定义在上的奇函数满足当时,. (1)求在上的解析式; (2)判断在上的单调性,并给予证明; (3)当为何值时,关于方程在上有实数解?
已知函数 (1)当时,求函数的定义域、值域及单调区间; (2)对于,不等式恒成立,求正实数的取值范围.
某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本(万元)与年产量(吨)之间的函数关系式近似地表示为.问:(1)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润; (2)年产量为多少吨时,每吨的平均成本最低?并求出最低成本。