.(本小题满分14分) 直棱柱 中,底面 ABCD是直角梯形,∠ BAD=∠ ADC=90°, . (Ⅰ) 求证: AC⊥平面 BB 1 C 1 C; (Ⅱ)若P为 A 1 B 1的中点,求证: DP∥平面 BCB 1,且 DP∥平面 ACB 1.
已知函数,其中为常数. (1)若函数在区间上单调,求的取值范围; (2)若对任意,都有成立,且函数的图象经过点, 求的值.
抛物线在点,处的切线垂直相交于点,直线与椭圆相交于,两点. (1)求抛物线的焦点与椭圆的左焦点的距离; (2)设点到直线的距离为,试问:是否存在直线,使得,,成等比数列?若存在,求直线的方程;若不存在,请说明理由.
设函数. (1)求的单调区间; (2)设函数,若当时,恒成立,求的取值范围.
(本小题满分14分)如图,平面平面,四边形为矩形,△为等边三角形.为的中点,. (1)求证:; (2)求二面角的正切值.
在等差数列中,已知,. (1)求; (2)若,设数列的前项和为,试比较与的大小.