(本小题满分8分)A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数.若A城供电量为20亿度/月,B城为10亿度/月.(Ⅰ)把月供电总费用y表示成x的函数,并求定义域;(Ⅱ)核电站建在距A城多远,才能使供电费用最小.
(本题满分13分) 设函数的最小值为,最大值为,又 (1)求数列的通项公式; (2)设,求的值; (3)设,是否存在最小的整数,使对,有成立?若存在,求出的值;若不存在,请说明理由。
(本题满分12分) 如图,正三棱柱ABC—A1B1C1的所有棱长均为2,P是侧棱AA1上任意一点. (1)求证:B1P不可能与平面ACC1A1垂直; (2)当BC1⊥B1P时,求线段AP的长; (3)在(2)的条件下,求二面角CB1PC1的大小.
(本题满分12分) 已知函数,求 (Ⅰ)函数的定义域和值域;(Ⅱ)写出函数的单调递增区间.
(本题满分12分) 已知函数=,在x=1处取得极值为2.(1)求函数的解析式;(2)若函数在区间(m,2m+1)上为增函数,求实数m的取值范围;(3)若P(x0,y0)为=图象上的任意一点,直线l与=的图象相切于点P,求直线l的斜率的取值范围.
(本小题满分14分) 设函数,有。 (1)求的值;(2)求数列的通项公式;(3)是否存在正数均成立,若存在,求出k的最大值,并证明,否则说明理由。