(本小题满分8分)A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数.若A城供电量为20亿度/月,B城为10亿度/月.(Ⅰ)把月供电总费用y表示成x的函数,并求定义域;(Ⅱ)核电站建在距A城多远,才能使供电费用最小.
如图,在正四棱锥中,,点在棱上。 (Ⅰ)问点在何处时,,并加以证明; (Ⅱ)求二面角的余弦值。
设函数=是奇函数,其中,,。 (Ⅰ)求的值; (Ⅱ)判断并证明在上的单调性。
已知圆和直线,直线,都经过圆C外 定点A(1,0). (Ⅰ)若直线与圆C相切,求直线的方程; (Ⅱ)若直线与圆C相交于P,Q两点,与交于N点,且线段PQ的中点为M, 求证:为定值.
在正方体中,分别是中点. (Ⅰ)求证:平面⊥平面; (Ⅱ)若在棱上有一点,使平面,求与的比.
一个多面体的直观图及三视图如图所示(其中E、F分别是PB、AD的中点). (Ⅰ)求证:EF⊥平面PBC; (Ⅱ)求三棱锥B—AEF的体积。