(本小题满分8分)⑴已知△ABC三个顶点的坐标分别为A(4,1),B(0,3),C(2,4),边AC的中点为D,求AC边上中线BD所在的直线方程并化为一般式;⑵已知圆C的圆心是直线和的交点上且与直线相切,求圆C的方程.
(本小题满分12分)双曲线,一焦点到其相应准线的距离为,过点A(0,-b),B(a,0)的直线与原点的距离为(1)求该双曲线的方程(2)是否存在直线与双曲线交于相异两点C,D,使得C,D两点都在以A为圆心的同一个圆上,若存在,求出直线方程;若不存在说明理由.
本小题满分12分)
已知斜三棱柱ABC—A1B1C1,在底面ABC上的射影恰为AC的中点D,又知
设 (1)求从A中任取一个元素是(1,2)的概率; (2)从A中任取一个元素,求的概率 (理)(3)设为随机变量, (2)设从A中任取一个元素,的事件为C,有 (4,6)(6,4)(5,5)(5,6)(6,5)(6,6)
(本小题满分10分)已知不等式的解集为A,不等式的解集为B,(1)求(2)若不等式的解集是,求的解集.
(本小题满分12分)某食品厂定期购买面粉,已知该厂每天需要面粉6吨,每吨面粉的价格为1800元,面粉的保管等其它费用为平均每吨每天3元,购面粉每次需支付运费900元.求该厂多少天购买一次面粉,才能使平均每天所支付的总费用最少?