.(本小题12分)设函数(1)讨论函数的单调性;(2)求函数在上的最大值和最小值。
如图,是圆的直径,直线与圆相切于,垂直于,垂直于,垂直于,垂直于,连接,证明: (Ⅰ); (Ⅱ).
已知函数, (Ⅰ)求函数的单调区间; (Ⅱ)若函数在在区间上的最小值为0,求的值.
已知椭圆过点,且离心率. (Ⅰ)求椭圆方程; (Ⅱ)若直线与椭圆交于不同的两点,且线段的垂直平分线过定点,求的取值范围.
如图,已知四棱锥, ,,平面,为中点. (Ⅰ)求证:平面; (Ⅱ)求证:平面平面.
已知函数,其中. (Ⅰ)当时,求不等式的解集; (Ⅱ)已知关于的不等式的解集为,求的值 .