已知直线:和:。(1)当∥时,求a的值(2)当⊥时求a的值及垂足的坐标
设函数是定义在上的偶函数,当时,(是实数)。(1)当时,求f(x)的解析式;(2)若函数f(x)在(0,1]上是增函数,求实数的取值范围;(3)是否存在实数,使得当时,f(x)有最大值1.
如图,四面体ABCD中,O是BD的中点,CA=CB=CD=BD=2,AB=AD=。(1)求证:AO⊥平面BCD;(2)求E到平面ACD的距离;(3)求异面直线AB与CD所成角的余弦值。
如图,有三个并排放在一起的正方形,.(1)求的度数;(2)求函数的最大值及取得最大值时候的x值。
掷两枚骰子,记事件A为“向上的点数之和为n”.(1)求所有n值组成的集合;(2)n为何值时事件A的概率P(A)最大?最大值是多少?(3)设计一个概率为0.5的事件(不用证明)
(本小题满分12分)设函数(Ⅰ)求的单调区间;(Ⅱ)当时,设的最小值为恒成立,求实数t的取值范围.