(本小题满分12分)在医学生物学实验中,经常以小老鼠作为实验对象.在甲笼子里关有7只小老鼠(其中5只白色的,2只灰色的),由于都感染了某种烈性病菌,所以想让它们自行分开.以便于进行观察、试验.现有乙笼子是空的,把甲笼子打开一个小孔(只能让小鼠钻出去,再进不来),让小鼠一只一只地往乙笼子跑(假定它们都会争先恐后地从小孔往乙笼跑),直到两只小灰鼠都跑出甲笼子,立即关闭小孔.以f表示甲笼子里还剩下的小白鼠的数目(1) 求乙笼子里恰好只有2只小灰鼠的概率;(2) 求的分布列与数学期望.
平面直角坐标系中,直线l的参数方程(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为 (1)求直线l的极坐标方程; (2)若直线l与曲线C相交于A,B两点,求|AB|.
如图,AB是圆O的直径,弦CD⊥AB于点M,E是CD延长线上一点,AB=10,CD=8,3ED=4OM,EF切圆O于F,BF交CD于G. (1)求证:△EFG为等腰三角形; (2)求线段MG的长.
如图,椭圆和圆,已知椭圆过点,焦距为2. (1)求椭圆的方程; (2)椭圆的下顶点为E,过坐标原点O且与坐标轴不重合的任意直线l与圆相交于点A,B,直线EA,EB与椭圆的另一个交点分别是点P,M,设PM的斜率为,直线l的斜率为,求的值
已知函数 (1)若曲线在处的切线与x轴平行,求函数的单调区间; (2)当的最大值大于时,求a的取值范围.
如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点. (1)求证:PC⊥AD; (2)求点D到平面PAM的距离.