已知关于的不等式的解集为.(1)当时,求集合;(2)当时,求实数的范围.
一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
从第一个学生开始买饭时计时. (Ⅰ)求第2分钟末没有人买晚饭的概率; (Ⅱ)估计第三个学生恰好等待4分钟开始买饭的概率.
已知角的顶点在原点,始边与轴的正半轴重合,终边经过点. (Ⅰ)求的值; (Ⅱ)若函数,求函数在区间上的取值范围.
已知函数(,),. (Ⅰ)证明:当时,对于任意不相等的两个正实数、,均有成立; (Ⅱ)记, (ⅰ)若在上单调递增,求实数的取值范围; (ⅱ)证明:.
已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。 (Ⅰ)试问在轴上是否存在不同于点的一点,使得与轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。 (Ⅱ)若的面积为,求向量的夹角;
已知为等比数列,是等差数列, (Ⅰ)求数列的通项公式及前项和; (Ⅱ)设,,其中,试比较与的大小,并加以证明.