已知定义域为的函数是奇函数.(1)求的值;(2)用定义法证明函数在上是减函数;(3)若对任意的,不等式恒成立,求的取值范围.
已知函数 (1)当时,函数恒有意义,求实数的取值范围; (2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由.
试比较下列各式的大小(不写过程) 1-与--与- 通过上式请你推测出-与-(n2,nN)的大小,并用分析法证明
某电脑公司有6名产品推销员,其中5名产品推销员工作年限与年推销金额数据如下表:
(Ⅰ) 求年推销金额关于工作年限的线性回归方程 (Ⅱ)若第6名推销员的工作年限为11年,试估计他的年推销金额.
已知复数, 求实数a、b 的值.
已知数列满足,是的前项的和,并且. (1)求数列的前项的和; (2)证明: