(本小题满分14分)从参加高三年级期中考试的学生中随机抽出40名学生,将其数学成绩(均为整数)分成六组[40,50,[50,60,…[90,100]后得到如下频率分布直方图.(Ⅰ)同一组数据用该组区间的中点值作为代表,据此估计本次考试的平均分;(Ⅱ)从上述40名学生中随机抽取2人,求这2人成绩都在[70,80的概率;(Ⅲ)从上述40名学生中随机抽取2人,抽到的学生成绩在[40,60,记为0分,在[60,100],记为1分.用X表示抽取结束后的总记分,求X的分布列和数学期望.
(本小题满分10分)已知集合,.(1)求;(2)已知集合,若,求实数的取值范围.
函数是定义在上的奇函数,且。(1)求实数a,b,并确定函数的解析式;(2)判断在(-1,1)上的单调性,并用定义证明你的结论;(3)写出的单调减区间,并判断有无最大值或最小值?如有,写出最大值或最小值。(本小问不需要说明理由)
我国是水资源匮乏的国家为鼓励节约用水,某市打算出台一项水费政策措施,规定:每一季度每人用水量不超过5吨时,每吨水费收基本价1.3元;若超过5吨而不超过6吨时,超过部分水费加收200%;若超过6吨而不超过7吨时,超过部分的水费加收400%,如果某人本季度实际用水量为吨,应交水费为。(1)求、、的值;(2)试求出函数的解析式。
已知是二次函数,且(1)求的解析式;(2)求函数的单调递减区间及值域。
已知,(1)证明:(2)计算的值