已知z是复数,z+2i、均为实数(i为虚数单位),且复数(z+ai)2在复平面上对应的点在第一象限,求实数a的取值范围.
已知椭圆的左、右焦点分别为,且经过定点,为椭圆上的动点,以点为圆心,为半径作圆.(1)求椭圆的方程;(2)若圆与轴有两个不同交点,求点横坐标的取值范围;(3)是否存在定圆,使得圆与圆恒相切?若存在,求出定圆的方程;若不存在,请说明理由.
某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为210吨。 (1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求每吨产品平均最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
如图,在四棱锥中,底面为直角梯形,且,,侧面底面. 若.(Ⅰ)求证:平面;(Ⅱ)侧棱上是否存在点,使得平面?若存在,指出点 的位置并证明,若不存在,请说明理由;(Ⅲ)求二面角的余弦值.
高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组……第五组如图是按上述分组方法得到的频率分布直方图.(1)若成绩大于等于14秒且小于16秒规定为良好,求该班在这次百米测试中成绩为良好的人数。(2)设表示该班两个学生的百米测试成绩,已知求事件“”的概率。
已知以角为钝角的的内角A、B、C的对边分别为a、b、c,,且(1)求角的大小;(2)求的取值范围.