解关于的不等式(
(本小题14分)已知若,求的值;当∈时,求函数的值域.
设不等式组所表示的平面区域为Dn,记Dn内整点的个数为an(横纵坐标均为整数的点称为整点).(1)n=2时,先在平面直角坐标系中作出区域D2,再求a2的值;(2)求数列{an}的通项公式;(3)记数列{an}的前n项的和为Sn,试证明:对任意n∈N*,恒有<成立.
如图,已知双曲线=1(a>0,b>0),定点(c是双曲线的半焦距),双曲线虚轴的下端点为B.过双曲线的右焦点F(c,0)作垂直于x轴的直线交双曲线于点P,若点D满足 (O为原点),且三点共线.(1)求双曲线的离心率;(2)若a=2,过点B的直线l交双曲线的左、右支于M、N两点,且△OMN的面积S△OMN=,求l的方程.
已知函数在上是减函数.(1)求实数的取值范围;(2)设,若对任意实数,不等式恒成立,求实数的最小值.
如图,已知三棱锥P-ABC中,PC⊥平面ABC,AB⊥BC,PC=BC=4,AB=2,E、F分别是PB、PA的中点.(1)求证:侧面PAB⊥侧面PBC;(2)求三棱锥P-CEF的外接球的表面积.