椭圆的中心是原点O,它的短轴长为,相应于焦点F(c,0)(c>0)的准线与x轴相交于点A,,过点A的直线与椭圆相交于P,Q两点,(1)求椭圆的离心率及方程。(2)若·,求直线PQ的方程。(3)设,过点P且平行于准线l的直线与椭圆相交于另一点M,证明
(本小题满分13分)设M是由满足下列条件的函数构成的集合:“①方程有实数根;②函数的导数满足”.(1)判断函数是否是集合M中的元素,并说明理由;(2)若集合M中的元素具有下面的性质:“若的定义域为D,则对于任意,都存在,使得等式成立”,试用这一性质证明:方程只有一个实数根;(3)设是方程的实数根,求证:对于定义域中的任意的,当且时,.
(本小题满分13分)如图,设抛物线的准线与轴交于,焦点为;以为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且M在与之间运动.(1)当时,求椭圆的方程;(2)当的边长恰好是三个连续的自然数时,求面积的最大值.
(本小题满分13分)已知△ABC中,角A、B、C成等差数列,求证:+=
(本小题满分12分)已知如图所示的程序框图(未完成),设当箭头a指向①时,输出的结果为S=m,当箭头a指向②时,输出的结果为S=n,求m+n的值.
(本小题满分12分)在一次“研究性学习”中,三班第一组的学生对人们的休闲方式的进行了一次随机调查,
数据如下:试判断性别与休闲方式是否有关系?作为这个判断出错的可能性有多大?