(本小题共12分)(注意:在试题卷上作答无效)已知抛物线上一动点P,抛物线内一点A(3,2) ,F为焦点且的最小值为.(1)求抛物线的方程以及使得取最小值时的P点坐标;(2)过(1)中的P点作两条互相垂直的直线与抛物线分别交于C、D两点,直线CD是否过一定点?若是,求出该定点的坐标,若不是,请说明理由.
本小题满分14分) 已知α是第三象限角,且f(α)=. (1)化简f(α), (2)若cos(α-)=,求f(α)的值.
已知函数. (Ⅰ)求的单调区间; (Ⅱ)设,若对任意,均存在,使得,求的取值范围。
、统计表明,某种型号的汽车在匀速行驶中每小时耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米。 (Ⅰ)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (Ⅱ)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
当时,, (Ⅰ)求,,,; (Ⅱ)猜想与的关系,并用数学归纳法证明.
直线分抛物线与轴所围成图形为面积相等的两个部分,求的值.