(本小题满分13分)设椭圆C1:的左、右焦点分别是F1、F2,下顶点为A,线段OA 的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.(1)求椭圆C1的方程;(2)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求面积的最大值.
(本小题满分12分)设点P的坐标为,直线l的方程为.请写出点P到直线l的距离,并加以证明.
(本小题满分12分) 如图,FD垂直于矩形ABCD所在平面,CE//DF,. (Ⅰ)求证:BE//平面ADF; (Ⅱ)若矩形ABCD的一个边AB =,EF =,则另一边BC的长为何值时,二面角B-EF-D的大小为450?
(本小题满分12分) 三角形的三个内角A、B、C所对边的长分别为、、,设向量,若//. (I)求角B的大小; (II)求的取值范围.
(本小题满分15分)如图,在中,点的坐标为,点在轴上,点在轴的正半轴上,,在的延长线上取一点,使. (Ⅰ)当点在轴上移动时,求动点的轨迹; (Ⅱ)自点引直线与轨迹交于不同的两点、,点关于轴的对称点 记为,设,点的坐标为. (1)求证:; (2)若,求的取值范围.
(本小题满分15分)如图,在三棱柱中,已知,,. (Ⅰ)求直线与底面所成角正切值; (Ⅱ)在棱(不包含端点)上确定一点的位置, 使得(要求说明理由); (Ⅲ)在(Ⅱ)的条件下,若,求二面角的大小.