已知函数是定义在上的奇函数,当时,;(1)当时,求的表达式;(2)在(1)的条件下,求函数的最大值.
设函数.(1)当时,求函数的定义域;(2)若函数的定义域为,试求的取值范围.
已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,设直线的参数方程为(为参数).(1)求曲线的直角坐标方程与直线的普通方程;(2)设曲线与直线相交于两点,以为一条边作曲线的内接矩形,求该矩形的面积.
已知函数 ,且.(1)若在处取得极值,求的值; (2)求的单调区间;(3)若的最小值为1,求的取值范围.
已知定点,,满足的斜率乘积为定值的动点的轨迹为曲线.(1)求曲线的方程;(2)过点的动直线与曲线的交点为,与过点垂直于轴的直线交于点,又已知点,试判断以为直径的圆与直线的位置关系,并证明.
已知在四棱锥中,底面是矩形,且,,平面,、分别是线段、的中点.(1)证明: (2)在线段上是否存在点,使得∥平面,若存在,确定点的位置;若不存在,说明理由.(3)若与平面所成的角为,求二面角的余弦值