(本小题满分12分)如图,已知直角梯形ACDE所在的平面垂直于平面ABC,∠BAC=∠ACD=90O,∠EAC=600,AB=AC=AE.(1)在直线BC上是否存在一点P,使得DP∥平面EAB?请证明你的结论;(2)求平面EBD与平面ABC所成的锐二面角的大小。
(本小题12分)抛物线上有两个定点A、B分别在对称轴的上、下两侧,F为抛物线的焦点,并且|FA|=2,|FB|=5,(1)求直线AB的方程。(2)在抛物线AOB这段曲线上求一点P,使△PAB的面积最大,并求这个最大面积.
(本题12分)设命题p:,命题。若的必要不充分条件,求实数a的取值范围。
(本题12分)已知中心在原点,一焦点为F(0,)的椭圆被直线截得的弦的中点横坐标为,求此椭圆的方程。
(本题12分)中心在原点,焦点在x轴上的一个椭圆与一双曲线有共同的焦点F1,F2,且,椭圆的长半轴与双曲线的实半轴之差为4,离心率之比为3:7。求这两条曲线的方程.
(本题10分)求证:△ABC是等边三角形的充要条件是a2+b2+c2=ab+ac+bc。这里a、b、c是△ABC的三条边。