某租赁公司出租同一型号的设备40套,当每套月租金为270元时,恰好全部租出,在此基础上,每套月租金每增加10元,就少租出1套设备,而未租出的设备每月需支付各种费用每套20元,设每套设备实际月租金为元,月收益为元(总收益=设备租金收入—未租出设备支出费用)。⑴求与的函数关系式;⑵当为何值时,月收益最大?最大月收益是多少?
在某大学自主招生考试中,所有选报II类志向的考生全部参加了“数学与逻辑”和“阅读与表达”两个科目的考试,成绩分为A,B,C,D,E五个等级. 某考场考生两科的考试成绩的数据统计如图所示,其中“数学与逻辑”科目的成绩为B的考生有10人. (Ⅰ)求该考场考生中“阅读与表达”科目中成绩为A的人数; (Ⅱ)若等级A,B,C,D,E分别对应5分,4分,3分,2分,1分. (i)求该考场考生“数学与逻辑”科目的平均分; (ii)若该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分. 从这10 人中随机抽取两人,求两人成绩之和的分布列和数学期望.
已知△ABC中,角A,B,C所对的边分别是a, b, c, 且2(a2+b2-c2)=3ab. (Ⅰ)求; (Ⅱ)若c=2,求△ABC面积的最大值.
已知 (1)若不等式的解集为空集,求的范围; (2)若不等式有解,求的范围。
已知直线是过点,方向向量为的直线。圆方程 (1)求直线l的参数方程; (2)设直线l与圆相交于、两点,求的值。
如图,是圆的直径,为圆上一点,,垂足为,点为圆上任一点,交于点,交于点. 求证:(1);(2).