(本小题满分12分)已知数列满足,点在直线上.(Ⅰ)求数列的通项公式;(Ⅱ)若数列满足求的值;(Ⅲ)对于(II)中的数列,求的值
某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有两条巷道通往作业区(如下图),巷道有三个易堵塞点,各点被堵塞的概率都是;巷道有两个易堵塞点,被堵塞的概率分别为.(1)求巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若巷道中堵塞点个数为,求的分布列及数学期望,并按照"平均堵塞点少的巷道是较好的抢险路线"的标准,请你帮助救援队选择一条抢险路线,并说明理由.
凸四边形中,其中为定点,为动点,满足.(1)写出与的关系式;(2)设的面积分别为和,求的最大值。
已知函数(1)当a=1时,解不等式(2)若存在成立,求a的取值范围.
在极坐标系中,曲线的极坐标方程为,现以极点为原点,极轴为轴的非负半轴建立平面直角坐标系,直线的参数方程为(为参数)(1)写出直线l和曲线C的普通方程;(2)设直线l和曲线C交于A,B两点,定点P(—2,—3),求|PA|·|PB|的值.
如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC(1)求证:BE=2AD;(2)当AC=3,EC=6时,求AD的长.