如图,在△ABC中,CD是∠ACB的角平分线,△ADC的外接圆交BC于点E,AB=2AC(1)求证:BE=2AD;(2)当AC=3,EC=6时,求AD的长.
(本小题满分12分)已知函数.(Ⅰ)当时,求函数在,上的最大值、最小值;(Ⅱ)令,若在,上单调递增,求实数 的取值范围.
(本小题满分12分)已知数列满足,且,为的前项和.(Ⅰ)求证:数列是等比数列,并求的通项公式;(Ⅱ)如果对任意,不等式恒成立,求实数的取值范围.
.(本小题满分12分)某单位实行休年假制度三年以来,50名职工休年假的次数进行的调查统计结果如下表所示:
根据上表信息解答以下问题:(Ⅰ)从该单位任选两名职工,用表示这两人休年假次数之和,记“函数在区间,上有且只有一个零点”为事件,求事件发生的概率;(Ⅱ)从该单位任选两名职工,用表示这两人休年假次数之差的绝对值,求随机变量 的分布列及数学期望.
(本小题满分12分)如图,为矩形,为梯形,平面平面,,,.(Ⅰ)若为中点,求证:平面;(Ⅱ)求平面与所成锐二面角的余弦值.
(本小题满分12分)已知向量,,向量,,函数.(Ⅰ)求的最小正周期;(Ⅱ)已知,,分别为内角,,的对边,为锐角,,,且恰是在,上的最大值,求,和的面积.