已知函数,在点(1,f(1))处的切线方程为y+2=0. (1) 求函数f(x)的解析式;(2) 若对于区间[一2,2]上任意两个自变量的值x1,x2,都有,求实数c的最小值;(3) 若过点M(2,m)(m≠2),可作曲线y=f(x)的三条切线,求实数m的取值范围,
如图,已知DE⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。 (I)求证:AF//平面BCE; (II)求证:平面BCE⊥平面CDE; (III)求平面BCE与平面ACD所成锐二面角的大小。
已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点向轴作垂线,为垂足. (Ⅰ)求线段中点的轨迹方程; (Ⅱ)已知直线与的轨迹相交于两点,求的面积
已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C (1)求曲线C的方程. (2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程
如图,已知三棱锥的侧棱两两垂直,且,,是的中点。 (1)求异面直线与所成角的余弦值; (2)求直线和平面的所成角的正弦值。 (3)求点E到面ABC的距离。
设:方程有两个不等的负根,:方程无实根,若p或q为真,p且q为假,求的取值范围.