已知函数(R),为其导函数,且时有极小值.(1)求的单调递减区间;(2)若,,当时,对于任意x,和的值至少有一个是正数,求实数m的取值范围;(3)若不等式(为正整数)对任意正实数恒成立,求的最大值.
已知椭圆的离心率为,过右顶点A的直线l与椭圆C相交于A、B两点,且. (1)求椭圆C和直线l的方程; (2)记曲线C在直线l下方的部分与线段AB所围成的平面区域(含边界)为D.若 曲线与D有公共点,试求实数m的最小值.
某地有三个村庄,分别位于等腰直角三角形ABC的三个顶点处,已知AB=AC=6km,现计划在BC边的高AO上一点P处建造一个变电站. 记P到三个村庄的距离之和为y. (1)设,把y表示成的函数关系式; (2)变电站建于何处时,它到三个小区的距离之和最小?
设等差数列的前项和为且. (1)求数列的通项公式及前项和公式; (2)设数列的通项公式为,问: 是否存在正整数t,使得成等差数列?若存在,求出t和m的值;若不存在,请说明理由.
在△ABC中,a,b,c分别是角A、B、C所对的边,且b2=ac,向量和满足. (1)求的值; (2)三角形ABC为是否为等边三角形.
若点在线段上,且,求的面积;