在平面直角坐标系中,已知椭圆的焦点在轴上,离心率为,且经过点.(1)求椭圆的标准方程;(2) 以椭圆的长轴为直径作圆,设为圆上不在坐标轴上的任意一点,为轴上一点,过圆心作直线的垂线交椭圆右准线于点.问:直线能否与圆总相切,如果能,求出点的坐标;如果不能,说明理由.
设数列的前项和,数列满足. (1)求数列的通项公式; (2)求数列的前项和.
已知函数. (1)求的解集; (2)设函数,若对任意的都成立,求的取值范围.
已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线. (1)求曲线的普通方程; (2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.
如图,圆与圆交于两点,以为切点作两圆的切线分别交圆和圆于两点,延长交圆于点,延长交圆于点.已知. (1)求的长; (2)求.
已知函数,. (1)若函数的图象在处的切线与轴平行,求的值; (2)若,恒成立,求的取值范围.