(本小题满分12分)已知函数,其中为常数。(1)当时,>恒成立,求的取值范围;(2)求的单调区间。
(本小题满分12分)如图,在四棱锥P—ABCD中,底面ABCD是正方形,PA⊥平面ABCD,且PA=AB=2,E、F分别为AB、PC的中点。(1)求异面直线PA与BF所成角的正切值。(2)求证:EF⊥平面PCD。
(本小题满分10分)已知函数(1)求函数的最小正周期T;(2)当时,求函数的最大值和最小值。
(本小题满分13分)已知双曲线的右顶点为A,右焦点为F,右准线与轴交于点B,且与一条渐近线交于点C,点O为坐标原点,又,过点F的直线与双曲线右交于点M、N,点P为点M关于轴的对称点。(1)求双曲线的方程;(2)证明:B、P、N三点共线;(3)求面积的最小值。
.(本小题满分13分)某创业投资公司拟投资开发某种新能源产品,估计能获得10万元~1000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.(1)若建立函数f(x)模型制定奖励方案,试用数学语言表述公司对奖励函数f(x)模型的基本要求;(2)现有两个奖励函数模型:(1)y=;(2)y=4lgx-3.试分析这两个函数模型是否符合公司要求?