如图,四棱锥 P - A B C D 中, P A ⊥ 底面 A B C D ,四边形 A B C D 中, A B ⊥ A D , A B + A D = 4 , C D = 2 , ∠ C D A = 45 ° .
(I)求证:平面 P A B ⊥ 平面 P A D ; (II)设 A B = A P . (i)若直线 P B 与平面 P C D 所成的角为 30 ° ,求线段 A B 的长; (ii)在线段 A D 上是否存在一个点 G ,使得点 G 到点 P , B , C , D 的距离都相等?说明理由.
设函数. (1)当时,解不等式; (2)若的解集为,,求证:.
已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线的极坐标方程为,曲线C的参数方程是(是参数). (1)求直线的直角坐标方程及曲线C的普通方程; (2)求曲线C上的点到直线的最大距离.
如图,是的一条切线,切点为B,ADE,CFD和CGE都是的割线,. (1)证明:; (2)证明:
已知函数,其中. (1)当时,求曲线的点处的切线方程; (2)当时,若在区间上的最小值为-2,求的取值范围; (3)若,且恒成立,求的取值范围.
已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有,当点的横坐标为3时,为正三角形. (1)求C的方程; (2)若直线,且和C有且只有一个公共点E. ①证明直线AE过定点,并求出定点坐标; ②的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.