椭圆的左、右焦点分别为F1、F2,离心率右准线为M、N是上的两个点,(1)若,求椭圆方程;(2)证明,当|MN|取最小值时,向量与共线.
设关于的不等式,的解集是,函数的定义域为.若“或”为真,“且”为假,求的取值范围.
已知函数(且). (1)求函数的单调区间; (2)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”. 试问:函数是否存在“中值相依切线”,请说明理由.
已知椭圆C:(a>b>0)的离心率为,且经过点P(1,)。 (1)求椭圆C的方程; (2)设F是椭圆C的右焦点,M为椭圆上一点,以M为圆心,MF为半径作圆M。问点M满足什么条件时,圆M与y轴有两个交点? (3)设圆M与y轴交于D、E两点,求点D、E距离的最大值。
已知单调递增的等比数列满足:,且是和的等差中项. (1) 求数列的通项公式; (2) 令,,求使成立的最小的正整数.
如图,多面体ABCDS中,面ABCD为矩形,, (1)求证:CD; (2)求二面角A—SB—D的余弦值.