椭圆的左、右焦点分别为F1、F2,离心率右准线为M、N是上的两个点,(1)若,求椭圆方程;(2)证明,当|MN|取最小值时,向量与共线.
已知函数,且的解集为.(1)求的值;(2)已知都是正数,且,求证:
在平面直角坐标系中,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.已知直线l的参数方程为为参数),圆的极坐标方程为.(1)若圆关于直线对称,求的值;(2)若圆与直线相切,求的值.
二阶矩阵M有特征值,其对应的一个特征向量e=,并且矩阵M对应的变换将点变换成点.(1)求矩阵M;(2)求矩阵M的另一个特征值及对应的一个特征向量.
已知函数(1)若函数存在极大值和极小值,求的取值范围;(2)设分别为的极大值和极小值,其中且求的取值范围.
已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,点是双曲线右支上相异两点,且满足为线段的中点,直线的斜率为(1)求双曲线的方程;(2)用表示点的坐标;(3)若,的中垂线交轴于点,直线交轴于点,求的面积的取值范围.