(本小题满分14分)已知圆:,点,,点在圆上运动,的垂直平分线交于点.(Ⅰ)求动点的轨迹的方程;(Ⅱ)设分别是曲线上的两个不同点,且点在第一象限,点在第三象限,若,为坐标原点,求直线的斜率;(Ⅲ)过点,且斜率为的动直线交曲线于两点,在轴上是否存在定点,使以为直径的圆恒过这个点?若存在,求出的坐标,若不存在,说明理由.
在数列中,已知,且。(1)用数学归纳法证明:;(2)求证.
根据某校五年发展规划,学校将修建一座长米,宽米的长方形体育馆.按照建筑要求,每隔米需打建一个桩位,每个桩位需花费万元(桩位视为一点且打在长方形的边上),桩位之间的米墙面需花万元,在不计地板和天花板的情况下,当为何值时,所需总费用最少?
已知的展开式的前三项的系数成等差数列;(1)求展开式中所有的有理项;(2)求展开式中系数的绝对值最大的项。
已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)求函数在上的最大值和最小值.
已知复数.(Ⅰ)求及 ;(Ⅱ)若,求实数的值.