(本小题满分12分)已知函数.(Ⅰ)若,令函数,求函数在上的极大值、极小值;(Ⅱ)若函数在上恒为单调递增函数,求实数的取值范围.
已知函数在处有极小值-1,求的单调区间.
求由曲线y=,y=2-x,y=-x围成图形的面积.
已知函数对一切,都有,且时,,。 (1)求证:是奇函数。 (2)判断的单调性,并说明理由。 (3)求在上的最大值和最小值。
设为奇函数,为常数。 (1)求的值; (2)证明在区间(1,+∞)内单调递增; (3)若对于区间[3,4]上的每一个的值,不等式恒成立,求实数的取值范围。
已知函数在区间[0,1]上的最大值为3,求实数a的值。