(本小题满分15分)某企业有两个生产车间分别在A,B两个位置,A车间有100名员工,B车间有400名员工,现要在公路AC上找一点D,修一条公路BD,并在D处建一个食堂,使得所有员工均在此食堂用餐,已知A,B,C中任意两点间的距离均有1 km,设∠BDC=,所有员工从车间到食堂步行的总路程为S.(1)写出S关于的函数表达式,并指出的取值范围;(2)问食堂D建在距离A多远时,可使总路程S最少?
(本题12分)在几何体中,是等腰直角三角形,,和都垂直于平面,且,点是的中点。 (1)求证:平面; (2)求面与面所成的角余弦值.
(本题14分) 已知向量动点到定直线的距离等于并且满足其中O是坐标原点,是参数. (I)求动点的轨迹方程,并判断曲线类型; (Ⅱ) 当时,求的最大值和最小值; (Ⅲ) 如果动点M的轨迹是圆锥曲线,其离心率满足求实数的取值范围.
(本题13分) 已知等比数列的前项和是,满足. (Ⅰ)求数列的通项及前项和; (Ⅱ)若数列满足,求数列的前项和; (Ⅲ)若对任意的,恒有成立,求实数的取值范围.
(本题12分) 已知函数与函数. (I)若的图象在点处有公共的切线,求实数的值; (Ⅱ)设,求函数的极值.
本题12分) 长方体中,,,是底面对角线的交点. (Ⅰ) 求证:平面; (Ⅱ) 求证:平面; (Ⅲ) 求三棱锥的体积.