(本小题满分14分)如图,四棱锥P-ABCD中,底面ABCD为菱形,且,侧面PAD是正三角形,其所在的平面垂直于底面ABCD,点G为AD的中点.(1)求证:BG面PAD;(2)E是BC的中点,在PC上求一点F,使得PG面DEF.
(本小题满分12分) 甲、乙二名射击运动员参加今年深圳举行的第二十六届世界大学生夏季运动会的预选赛,他们分别射击了4次,成绩如下表(单位:环):
(1)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率; (2)现要从中选派一人参加决赛,你认为选派哪位运动员参加比较合适?请说明理由.
(本题满分12分) 已知函数. (1)求的周期和单调递增区间; (2)说明的图象可由的图象经过怎样变化得到.
如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B, (1)若|AB|=8,求抛物线的方程; (2)设C为抛物线弧AB上的动点(不包括A,B两点),求的面积S的最大值; (3)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)
已知椭圆的离心率为,且过点(), (1)求椭圆的方程; (2)设直线与椭圆交于P,Q两点,且以PQ为对角线的菱形的一顶点为(-1,0),求:△OPQ面积的最大值及此时直线的方程.
在平面直角坐标系中,曲线的参数方程为(,为参数),在以为极点,轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点对应的参数,射线与曲线交于点, (1)求曲线,的方程; (2)若点,在曲线上,求的值.