(、(本题12分)如图,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,底面ABCD为直角梯形,BC∥AD, AB⊥AD, AD=2AB=2BC="2, " O为AD中点.(1)求证:PO⊥平面ABCD;(2)求直线PB与平面PAD所成角的正弦值;(3)线段AD上是否存在点Q,使得三棱锥的体积为?若存在,求出的值;若不存在,请说明理由。
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元). (1)写出与的函数关系式; (2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
在数列中,,且前项的算术平均数等于第项的倍. (1)写出此数列的前项; (2)归纳猜想的通项公式,并用数学归纳法证明.
已知函数(m为常数,且m>0)有极大值9. (1)求m的值; (2)若斜率为-5的直线是曲线的切线,求此直线方程.
已知、、,,求证
若复数,求实数使成立.(其中为的共轭复数)