(本小题满分12分)的两个顶点坐标分别是和,顶点A满足.(1)求顶点A的轨迹方程;(2)若点在(1)轨迹上,求的最值.
已知正四棱柱的底面边长为2,.(1)求该四棱柱的侧面积与体积;(2)若为线段的中点,求与平面所成角的大小.
已知函数,(其中,),且函数的图象在 点处的切线与函数的图象在点处的切线重合.(Ⅰ)求实数a,b的值;(Ⅱ)若,满足,求实数m的取值范围;
如图,F1,F2是离心率为的椭圆C:(a>b>0)的左、右焦点,直线:x=-将线段F1F2分成两段,其长度之比为1 : 3.设A,B是C上的两个动点,线段AB的中点M在直线l上,线段AB的中垂线与C交于P,Q两点.(Ⅰ) 求椭圆C的方程;(Ⅱ) 是否存在点M,使以PQ为直径的圆经过点F2,若存在,求出M点坐标,若不存在,请说明理由.
已知,数列满足,数列满足;又知数列中,,且对任意正整数,.(Ⅰ)求数列和数列的通项公式;(Ⅱ)将数列中的第项,第项,第项,……,第项,……删去后,剩余的项按从小到大的顺序排成新数列,求数列的前项和.
(本小题满分12分)如图,直角梯形与等腰直角三角形所在的平面互相垂直.∥,,,.(1)求直线与平面所成角的正弦值;(2)线段上是否存在点,使// 平面?若存在,求出;若不存在,说明理由.1