(本小题满分13分)已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.(1)求双曲线G的渐近线的方程;(2)求双曲线G的方程;(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分,求椭圆S的方程.
用圆的下列性质类比球的有关性质,并判断其真假 (1)圆心与弦(非直径)中点的连线垂直于弦; (2)与圆心距离相等的两弦相等; (3)圆的周长是直径); (4)圆的面积.
用数学归纳法证明:
某厂生产产品x件的总成本(万元),已知产品单价P(万元)与产品件数x满足:,生产100件这样的产品单价为50万元,产量定为多少件时总利润最大?
函数在区间上都有意义,且在此区间上 ①为增函数,; ②为减函数,. 判断在的单调性,并给出证明.
设复数z满足|z|=2,且(z-a)2=a,求实数a的值.