已知向量a=(cosx,sinx),b=(-cosx,cosx),c=(-1,0)。(1)若,求向量a,c的夹角;(2)当时,求函数f(x)=2a·b+1的最大值。
已知等比数列中,,求其第4项及前5项和.
如图,已知梯形ABCD中,CD=2,AC=,∠BAD=60°,求(1)边AD的长度(2) 梯形的高.
设数列是等比数列,,公比是的展开式中的第二项(按x的降幂排列).(1)用表示通项与前n项和;(2)若,用表示.
已知:四棱锥P—ABCD的底面为直角梯形,且AB∥CD,∠DAB=90o,DC=2AD=2AB,侧面PAD与底面垂直,PA=PD,点M为侧棱PC上一点.(1)若PA=AD,求PB与平面PAD的所成角大小;(2)问多大时,AM⊥平面PDB可能成立?
已知圆锥曲线C:,点分别为圆锥曲线C的左、右焦点,点B为圆锥曲线C的上顶点,求经过点且垂直于直线的直线的方程.