(定义在上的函数,对任意的都有成立.(1)令,求证:为奇函数;(2)若,且函数在上为增函数,解不等式:.
已知,:,:.⑴若是的充分条件,求实数的取值范围;⑵若,“或”为真命题,“且”为假命题,求实数的取值范围.
已知直线相交于两点,且(其中O为坐标原点).(1)若椭圆的离心率为,求椭圆的标准方程;(2)求证:不论如何变化,椭圆恒过第一象限内的一个定点,并求点的坐标;(3)若椭圆的离心率,求椭圆长轴长的取值范围.
如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形,,是中点,过、、三点的平面交于. (1)求证:; (2)求证:是中点;(3)求证:平面⊥平面.
如图为双曲线的两焦点,以为直径的圆与双曲线交于是圆与轴的交点,连接与交于,且是的中点,(1)当时,求双曲线的方程; (2)试证:对任意的正实数,双曲线的离心率为常数.
由图看出显然一个交点,因此函数的零点个数只有一个在研究色盲与性别的关系调查中,调查了男性480人,其中有38人患色盲,调查的520个女性中6人患色盲,(1)根据以上的数据建立一个2×2的列联表;(2)若认为“性别与患色盲有关系”,则出错的概率会是多少