((本小题满分12分)设函数的图象关于原点对称,且=1时,f(x)取极小值。(1)求的值;(2)若时,求证:。
已知抛物线C:y2=2px(p>0)过点A(1,-2).(Ⅰ)求抛物线C的方程,并求其准线方程;(Ⅱ)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由.
已知平面区域被圆C及其内部所覆盖.(Ⅰ)当圆C的面积最小时,求圆C的方程;(Ⅱ)若斜率为1的直线l与(1)中的圆C交于不同的两点A、B,且满足CA⊥CB,求直线l的方程.
已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,直线l1过点,并且直线l1与直线l2垂直.求满足条件的a,b的值.
(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分.) 已知数列{}满足:,为数列的前项和。 (1) 若{}是递增数列,且成等差数列,求的值; (2) 若,且{}是递增数列,{}是递减数列,求数列{}的通项公式; (3) 若,对于给定的正整数,是否存在一个满足条件的数列,使得,如果存在,给出一个满足条件的数列,如果不存在,请说明理由。
(本题满分16分,第1小题满分4分,第2小题满分6分,第3小题满分6分.) 已知椭圆的左、右焦点分别为,,点是椭圆的一个顶点,△是等腰直角三角形. (1)求椭圆的方程; (2)设点是椭圆上一动点,求线段的中点的轨迹方程; (3)过点分别作直线,交椭圆于,两点,设两直线的斜率分别为,, 且,探究:直线是否过定点,并说明理由.