某中学的高二(1)班男同学有名,女同学有名,老师按照分层抽样的方法组建了一个人的课外兴趣小组.(Ⅰ)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(Ⅱ)经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;(Ⅲ)试验结束后,第一次做试验的同学得到的试验数据为,第二次做试验的同学得到的试验数据为,请问哪位同学的实验更稳定?并说明理由.
已知函数在处切线为. (1)求的解析式; (2)设,,,表示直线的斜率,求证:.
如图,已知点是离心率为的椭圆:上的一点,斜率为的直线交椭圆于,两点,且、、三点互不重合. (1)求椭圆的方程;(2)求证:直线,的斜率之和为定值.
如图,已知四棱锥,底面是等腰梯形,且∥,是中点,平面,, 是中点. (1)证明:平面平面;(2)求点到平面的距离.
对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下. (1)求,并根据图中的数据,用分层抽样的方法抽取个元件,元件寿命落在之间的应抽取几个? (2)从(1)中抽出的寿命落在之间的元件中任取个元件,求事件“恰好有一个元件寿命落在之间,一个元件寿命落在之间”的概率.
已知为锐角,且,函数,数列的首项,. (1)求函数的表达式;(2)求数列的前项和.