(本小题满分13分)已知定点,,动点A满足|AE|=4,线段AF的垂直平分线交AE于点M。(1)求点M的轨迹C1的方程;(2)抛物线C2:与C1在第一象限交于点P,直线PF交抛物线于另一个点Q,求抛物线的POQ弧上的点R到直线PQ的距离的最大值。
已知(1)当时,求的零点;(2)若,且的两个零点一个大于2,另一个小于2,求实数的取值范围;(3)对任意,函数恒有两个相异的零点,求实数的取值范围
已知:,(1)求的值;(2)设,求的值。
已知是奇函数,且其图象经过点(1,3)和(2,3)。(1)求的表达式;(2)用单调性的定义证明:在上是减函数;(3)在上是增函数还是减函数?(只需写出结论,不需证明)
用抽气机每次抽出容器内空气的60%,设容器内原有空气总量为,用抽气机抽x次后,剩余空气总量为(1)写出关于的函数关系式,并标明定义域;(2)至少抽多少次后,剩余空气总量才能不超过原有总量的?(以下数据供你参考:)
(1)求的定义域;(2)已知 ,求函数的值域。