(本小题满分13分)已知定点,,动点A满足|AE|=4,线段AF的垂直平分线交AE于点M。(1)求点M的轨迹C1的方程;(2)抛物线C2:与C1在第一象限交于点P,直线PF交抛物线于另一个点Q,求抛物线的POQ弧上的点R到直线PQ的距离的最大值。
已知数列 { a n } 中的相邻两项 a 2 k - 1 a 2 k ,是关于的方程 x 2 - ( 3 k + 2 k ) x + 3 k · 2 k = 0 的两个根,且 a 2 k - 1 ≤ a 2 k ( k = 1 , 2 , 3 , . . . ) .
(I)求 a 1 , a 3 , a 5 , a 7 ; (II)求数列 { a n } 的前 2 n 项和 S 2 n ; (Ⅲ)记 f ( n ) = 1 2 ( | sin n | sin n + 3 ) , T n = ( - 1 ) f ( 2 ) a 1 a 2 + ( - 1 ) f ( 3 ) a 3 a 4 + ( - 1 ) f ( 4 ) a 5 a 6 + . . . + ( - 1 ) f ( n + 1 ) a 2 n - 1 a 2 n ,
求证: 1 6 ≤ T n ≤ 5 24 ( n ∈ N * ) .
如图,直线 y = k x + b 与椭圆 x 2 4 + y 2 = 1 交于 A , B 两点,记 △ A O B 的面积为 S .
(I)求在 k = 0 , 0 < b < 1 的条件下, S 的最大值; (II)当 A B = 2 , S = 1 时,求直线 A B 的方程.
在如图所示的几何体中, E A ⊥ 平面 A B C , D B ⊥ 平面 A B C , A C ⊥ B C ,且 A C = B C = B D = 2 A E , M 是 A B 的中点.
(I)求证: C M ⊥ E M ; (II)求 C M 与平面 C D E 所成的角.
已知 △ A B C 的周长为 2 + 1 ,且 sin A + sin B = 2 sin C . (I)求边 A B 的长; (II)若 △ A B C 的面积为 1 6 sin C ,求角 C 的度数.
已知半椭圆 x 2 a 2 + y 2 b 2 = 1 ( x ≥ 0 ) 与半椭圆 x 2 c 2 + y 2 b 2 = 1 ( x ≤ 0 ) 组成的曲线称为"果圆",其中 a 2 = b 2 + c 2 , a > 0 , b > c > 0 .如图,设点 F 0 , F 1 , F 2 是相应椭圆的焦点, A 1 , A 2 和 B 1 , B 2 是"果圆" 与 x , y 轴的交点, (1)若三角形 F 0 F 1 F 2 是边长为1的等边三角形,求"果圆"的方程; (2)若 A 1 A > B 1 B ,求 b a 的取值范围; (3)一条直线与果圆交于两点,两点的连线段称为果圆的弦。是否存在实数 k ,使得斜率为 k 的直线交果圆于两点,得到的弦的中点的轨迹方程落在某个椭圆上?若存在,求出所有 k 的值;若不存在,说明理由.