已知数列 { a n } 中的相邻两项 a 2 k - 1 a 2 k ,是关于的方程 x 2 - ( 3 k + 2 k ) x + 3 k · 2 k = 0 的两个根,且 a 2 k - 1 ≤ a 2 k ( k = 1 , 2 , 3 , . . . ) .
(I)求 a 1 , a 3 , a 5 , a 7 ; (II)求数列 { a n } 的前 2 n 项和 S 2 n ; (Ⅲ)记 f ( n ) = 1 2 ( | sin n | sin n + 3 ) , T n = ( - 1 ) f ( 2 ) a 1 a 2 + ( - 1 ) f ( 3 ) a 3 a 4 + ( - 1 ) f ( 4 ) a 5 a 6 + . . . + ( - 1 ) f ( n + 1 ) a 2 n - 1 a 2 n ,
求证: 1 6 ≤ T n ≤ 5 24 ( n ∈ N * ) .
已知函数,若方程有且只有两个相异根0和2,且(1)求函数的解析式。(2)已知各项不为1的数列{an}满足,求数列通项an。(3)如果数列{bn}满足,求证:当时,恒有成立。
已知,函数,在是一个单调函数。(1)试问在的条件下,在能否是单调递减函数?说明理由。(2)若在上是单调递增函数,求实数a的取值范围。(3)设且,比较与的大小。
已知函数(其中)的图象与x轴在原点右侧的第一个交点为N(6,0),又(1)求这个函数解析式(2)设关于x的方程在[0,8]内有两个不同根,求的值及k的取值范围。
设排球队A与B进行比赛,规定若有一队胜四场,则为获胜队,已知两队水平相当(1)求A队第一、五场输,第二、三、四场赢,最终获胜的概率;(2)若要决出胜负,平均需要比赛几场?
(1)解关于x的不等式(2)记a>0时(1)中不等式的解集为A,集合B=,若恰有3个元素,求a的取值范围。