.如图,边长为2的正方形ABCD,E是BC的中点,沿AE,DE将折起,使得B\C重合于O.(Ⅰ)设Q为AE的中点,证明:QDAO;.(Ⅱ)求二面角O—AE—D的余弦值.
有一块正方形 EFGH , EH 所在直线是一条小河,收获的蔬菜可送到 F 点或河边运走.于是,菜地分别为两个区域 S 1 和 S 2 ,其中 S 1 中的蔬菜运到河边较近, S 2 中的蔬菜运到 F 点较近,而菜地内 S 1 和 S 2 的分界线 C 上的点到河边与到 F 点的距离相等,现建立平面直角坐标系,其中原点 O 为 EF 的中点,点 F 的坐标为 ( 1 , 0 ) ,如图
(1)求菜地内的分界线 C 的方程;
(2)菜农从蔬菜运量估计出 S 1 面积是 S 2 面积的两倍,由此得到 S 1 面积的经验值为 8 3 .设 M 是 C 上纵坐标为1的点,请计算以 EH 为一边,另一边过点 M 的矩形的面积,及五边形 EOMGH 的面积,并判断哪一个更接近于 S 1 面积的“经验值”.
将边长为1的正方形 A A 1 O 1 O (及其内部)绕 O O 1 旋转一周形成圆柱,如图, AC ̂ 长为 2 3 π , A 1 B 1 ̂ 长为 π 3 ,其中 B 1 与 C 在平面 A A 1 O 1 O 的同侧.
(1)求三棱锥 C - O 1 A 1 B 1 的体积;
(2)求异面直线 B 1 C 与 A A 1 所成的角的大小.
已知函数 f ( x ) = | 2 x - a | + a .
(1)当 a = 2 时,求不等式 f ( x ) ⩽ 6 的解集;
(2)设函数 g ( x ) = | 2 x - 1 | ,当 x ∈ R 时, f ( x ) + g ( x ) ⩾ 3 ,求 a 的取值范围.
在直角坐标系 xOy 中,曲线 C 1 的参数方程为 x = 3 cos α y = sin α ( α 为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线 C 2 的极坐标方程为 ρ sin ( θ + π 4 ) = 2 2 .
(1)写出 C 1 的普通方程和 C 2 的直角坐标方程;
(2)设点 P 在 C 1 上,点 Q 在 C 2 上,求 | PQ | 的最小值及此时 P 的直角坐标.
如图, ⊙ O 中 AB ̂ 的中点为 P ,弦 PC , PD 分别交 AB 于 E , F 两点.
(1)若 ∠ PFB = 2 ∠ PCD ,求 ∠ PCD 的大小;
(2)若 EC 的垂直平分线与 FD 的垂直平分线交于点 G ,证明: OG ⊥ CD .