:已知椭圆P的中心O在坐标原点,焦点在x坐标轴上,且经过点,离心率为(1)求椭圆P的方程:(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足.若存在,求直线l的方程;若不存在,请说明理由.
(本小题满分12分) 已知函数。 (Ⅰ)求的值域; (Ⅱ)若(x>0)的图象与直线交点的横坐标由小到大依次是,,…,,求数列的前项的和。
(本小题满分14分) 已知函数,.(其中为自然对数的底数), (Ⅰ)设曲线在处的切线与直线垂直,求的值; (Ⅱ)若对于任意实数≥0,恒成立,试确定实数的取值范围; (Ⅲ)当时,是否存在实数,使曲线C:在点 处的切线与轴垂直?若存在,求出的值;若不存在,请说明理由.
(本小题满分14分) 已知椭圆的左右焦点为,抛物线C:以F2为焦点且与椭圆相交于点M、N,直线与抛物线C相切 (Ⅰ)求抛物线C的方程和点M、N的坐标; (Ⅱ)求椭圆的方程和离心率.
(本小题满分14分) 如图,已知三棱锥A—BPC中,AP⊥PC, AC⊥BC, M为AB中点,D为PB中点,且△PMB为正三角形。 (Ⅰ)求证:DM∥平面APC; (Ⅱ)求证:平面ABC⊥平面APC; (Ⅲ)若BC=4,AB=20,求三棱锥D—BCM的体积.
(本小题满分14分) 已知数列中,,点在直线上. (Ⅰ)计算的值; (Ⅱ)令,求证:数列是等比数列; (Ⅲ)求数列的通项公式.