:已知椭圆P的中心O在坐标原点,焦点在x坐标轴上,且经过点,离心率为(1)求椭圆P的方程:(2)是否存在过点E(0,-4)的直线l交椭圆P于点R,T,且满足.若存在,求直线l的方程;若不存在,请说明理由.
已知直线:,,, (Ⅰ)求与交点的坐标; (Ⅱ)求过点,且与垂直的直线方程.
如图,一个几何体的三视图△是边长为的等边三角形, (Ⅰ)画出直观图; (Ⅱ)求这个几何体的体积
(本小题满分14分)已知f (x)=mx(m为常数,m>0且m≠1).设f (a1),f (a2),…,f (an),…(n∈N)是首项为m2,公比为m的等比数列. (1)求证:数列{an}是等差数列; (2)若bn=an f (an),且数列{bn}的前n项和为Sn,当m=3时,求Sn; (3)若cn= f(an) lg f (an),问是否存在m,使得数列{cn}中每一项恒不小于它后面的项?若存在,求出m的取值范围;若不存在,请说明理由.
(本小题满分13分)已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,D是AB的中点. (1)求动点D的轨迹C的方程; (2)若过点(1,0)的直线l与曲线C交于不同两点P、Q, ①当|PQ|=3时,求直线l的方程; ②设点E(m,0)是x轴上一点,求当·恒为定值时E点的坐标及定值.
(本小题满分12分)已知是边长为1的正方体,求: ⑴直线与平面所成角的正切值; ⑵二面角的大小; ⑶求点到平面的距离。