设椭圆 x 2 a 2 + y 2 3 1 ( a > 3 ) 的右焦点为F,右顶点为A,已知 1 | OF | + 1 | OA | = 3 e | FA | ,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在 x 轴上),垂直于l的直线与l交于点M,与y轴交于点H,若 BF ⊥ HF ,且 ∠ MOA = ∠ MAO ,求直线 l 的斜率.
设、b是满足的实数,其中. (1)求证:;(2)求证:.
已知,且,求证:
已知、y为正数,且, 求x+y的最小值。
(本小题满分14分)已知函数的导函数的图象关于直线对称。 (1)求b的值;(2)若函数无极值求c的取值范围;(3)若在处取得极小值,记此极小值为的定义域和值域。
(本小题满分12分)已知椭圆的长轴长为4。(1)若以原点为圆心、椭圆短半轴为半径的圆与直线相切,求椭圆焦点坐标;(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,记直线PM,PN的斜率分别为,当时,求椭圆的方程。